Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 209(10): 1930-1941, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36426944

RESUMO

The antiviral state, an initial line of defense against viral infection, is established by a set of IFN-stimulated genes (ISGs) encoding antiviral effector proteins. The effector ISGs are transcriptionally regulated by type I IFNs mainly via activation of IFN-stimulated gene factor 3 (ISGF3). In this study, the regulatory elements of effector ISGs were characterized to determine the (epi)genetic features that enable their robust induction by type I IFNs in multiple cell types. We determined the location of regulatory elements, the DNA motifs, the occupancy of ISGF3 subunits (IRF9, STAT1, and STAT2) and other transcription factors, and the chromatin accessibility of 37 effector ISGs in murine dendritic cells. The IFN-stimulated response element (ISRE) and its tripartite version occurred most frequently in the regulatory elements of effector ISGs than in any other tested ISG subsets. Chromatin accessibility at their promoter regions was similar to most other ISGs but higher than at the promoters of inflammation-related cytokines, which were used as a reference gene set. Most effector ISGs (81.1%) had at least one ISGF3 binding region proximal to the transcription start site (TSS), and only a subset of effector ISGs (24.3%) was associated with three or more ISGF3 binding regions. The IRF9 signals were typically higher, and ISRE motifs were "stronger" (more similar to the canonical sequence) in TSS-proximal versus TSS-distal regulatory regions. Moreover, most TSS-proximal regulatory regions were accessible before stimulation in multiple cell types. Our results indicate that "strong" ISRE motifs and universally accessible promoter regions that permit robust, widespread induction are characteristic features of effector ISGs.


Assuntos
Fatores de Restrição Antivirais , Cromatina , Animais , Camundongos , Cromatina/genética , Motivos de Nucleotídeos , Regiões Promotoras Genéticas/genética , Elementos de Resposta/genética , Interferons/metabolismo
2.
Front Immunol ; 13: 910705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238311

RESUMO

Dendritic cell (DC) fine-tunes inflammatory versus tolerogenic responses to protect from immune-pathology. However, the role of co-regulators in maintaining this balance is unexplored. NCoR1-mediated repression of DC immune-tolerance has been recently reported. Here we found that depletion of NCoR1 paralog SMRT (NCoR2) enhanced cDC1 activation and expression of IL-6, IL-12 and IL-23 while concomitantly decreasing IL-10 expression/secretion. Consequently, co-cultured CD4+ and CD8+ T-cells depicted enhanced Th1/Th17 frequency and cytotoxicity, respectively. Comparative genomic and transcriptomic analysis demonstrated differential regulation of IL-10 by SMRT and NCoR1. SMRT depletion represses mTOR-STAT3-IL10 signaling in cDC1 by down-regulating NR4A1. Besides, Nfkbia and Socs3 were down-regulated in Ncor2 (Smrt) depleted cDC1, supporting increased production of inflammatory cytokines. Moreover, studies in mice showed, adoptive transfer of SMRT depleted cDC1 in OVA-DTH induced footpad inflammation led to increased Th1/Th17 and reduced tumor burden after B16 melanoma injection by enhancing oncolytic CD8+ T-cell frequency, respectively. We also depicted decreased Ncor2 expression in Rheumatoid Arthritis, a Th1/Th17 disease.


Assuntos
Interleucina-10 , Interleucina-6 , Animais , Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Interleucina-6/metabolismo , Camundongos , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear , Fator de Transcrição STAT3 , Serina-Treonina Quinases TOR/metabolismo
3.
Front Immunol ; 12: 607315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679743

RESUMO

Dendritic cells (DCs) are professional antigen-presenting cells involved in the initiation of immune responses. We generated a tolerogenic DC (tolDC) line that constitutively secretes interleukin-10 (IL10-DCs), expressed lower levels of co-stimulatory and MHCII molecules upon stimulation, and induced antigen-specific proliferation of T cells. Vaccination with IL10-DCs combined with another tolDC line that secretes IL-35, reduced antigen-specific local inflammation in a delayed-type hypersensitivity assay independently on regulatory T cell differentiation. In an autoimmune model of rheumatoid arthritis, vaccination with the combined tolDCs after the onset of the disease impaired disease development and promoted recovery of mice. After stable memory was established, the tolDCs promoted CD4 downregulation and induced lymphocyte activation gene 3 (LAG-3) expression in reactivated memory T cells, reducing T cell activation. Taken together, our findings indicate the benefits of combining anti-inflammatory cytokines in an antigen-specific context to treat excessive inflammation when memory is already established.


Assuntos
Antígenos CD/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Memória Imunológica , Interleucina-10/biossíntese , Subunidade p35 da Interleucina-12/biossíntese , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/terapia , Comunicação Celular/imunologia , Linhagem Celular , Citocinas/metabolismo , Feminino , Expressão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Tolerância Imunológica , Imunomodulação , Imunoterapia/métodos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Vacinas/administração & dosagem , Vacinas/imunologia , Proteína do Gene 3 de Ativação de Linfócitos
4.
Eur J Immunol ; 51(5): 1126-1142, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33527393

RESUMO

Dendritic cell (DC) activation and cytokine production is tightly regulated. In this study, we found that Zbtb10 expression is activation dependent and it is essential for the immunogenic function of cDC1. Zbtb10 knockdown (KD) significantly reduced the expression of co-stimulatory genes CD80 and CD86 along with cytokines including IL-12, IL-6, and IL-10, in activated cDC1 Mutu-DC line. Consequently, the clonal expansion of CD44+ effector T cells in co-cultured CD4+ T cells was drastically reduced owing to significantly reduced IL-2. At the same time, these CD44+ effector T cells were unable to differentiate toward Tbet+ IFNγ+ Th1 subtype. Instead, an increased frequency of Th2 cells expressing GATA3+ and IL-13+ was observed. Interestingly, in Zbtb10 KD condition the co-cultured T cells depicted increased expression of PD1 and LAG3, the T-cell anergic markers. Moreover, the global transcriptome analysis identified that Zbtb10 is pertinent for DC activation and its depletion in cDC1 completely shuts down their immune responses. Mechanistic analysis revealed that Zbtb10 KD enhanced the expression of NKRF (NF-κB repressing factor) leading to drastic suppression of NF-κB related genes. Zbtb10 KD abrogated p65 and RelB nuclear translocation, thereby controlling the activation and maturation of cDC1 and the ensuing adaptive T cell responses.


Assuntos
Citocinas/biossíntese , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Biomarcadores , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ativação Linfocitária/imunologia , Camundongos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
5.
Eur J Immunol ; 50(12): 1959-1975, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32644192

RESUMO

Plasmacytoid dendritic cells (DCs) are reported to induce robust type-I interferon (IFN) response, whereas cDC1 DCs develop moderate type-I IFN response upon TLR9 stimulation. It is very interesting to understand how this signaling under TLR9 is tightly regulated for the induction of type-I IFNs. Here, we report co-repressor protein NCoR1 as the major factor fine-tuning the signaling pathways regulating IFN-ß expression under TLR9 in cDC1 DCs. We found that NCoR1 knockdown induced a robust IFN-ß-mediated antiviral response upon TLR9 activation in cDC1 DCs. At the molecular level, we showed that NCoR1 directly repressed MyD88-IRF7 signaling axis in cDC1 cells. Therefore, NCoR1 depletion enhanced pIRF7 levels, IFN-ß secretion, and downstream pSTAT1-pSTAT2 signaling, leading to sustained induction of IFN stimulatory genes. Integrative genomic analysis depicted strong enrichment of an antiviral gene-module in CpG-activated NCoR1 knockdown DCs upon TLR9 activation. Moreover, we confirmed our findings in primary DCs derived from splenocytes of WT and NCoR1 DC-/- animals, which showed protection from Sendai and Vesicular Stomatitis viruses upon CpG activation. Ultimately, we identified that NCoR1-HDAC3 complex is involved in repressing the type-I IFN response in cDC1 DCs.


Assuntos
Células Dendríticas/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologia
6.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244327

RESUMO

Identification of disease-associated autoantibodies is of high importance. Their assessment could complement current diagnostic modalities and assist the clinical management of patients. We aimed at developing and validating high-throughput protein microarrays able to screen patients' sera to determine disease-specific autoantibody-signatures for pancreatic cancer (PDAC), chronic pancreatitis (CP), autoimmune pancreatitis and their subtypes (AIP-1 and AIP-2). In-house manufactured microarrays were used for autoantibody-profiling of IgG-enriched preoperative sera from PDAC-, CP-, AIP-1-, AIP-2-, other gastrointestinal disease (GID) patients and healthy controls. As a top-down strategy, three different fluorescence detection-based protein-microarrays were used: large with 6400, intermediate with 345, and small with 36 full-length human recombinant proteins. Large-scale analysis revealed 89 PDAC, 98 CP and 104 AIP immunogenic antigens. Narrowing the selection to 29 autoantigens using pooled sera first and individual sera afterwards allowed a discrimination of CP and AIP from PDAC. For validation, predictive models based on the identified antigens were generated which enabled discrimination between PDAC and AIP-1 or AIP-2 yielded high AUC values of 0.940 and 0.925, respectively. A new repertoire of autoantigens was identified and their assembly as a multiplex test will provide a fast and cost-effective tool for differential diagnosis of pancreatic diseases with high clinical relevance.


Assuntos
Autoanticorpos/sangue , Pancreatite Autoimune/diagnóstico , Neoplasias Pancreáticas/diagnóstico , Análise Serial de Proteínas/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/imunologia , Pancreatite Autoimune/imunologia , Diagnóstico Diferencial , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/imunologia , Pancreatite Crônica/diagnóstico , Pancreatite Crônica/imunologia , Pacientes , Neoplasias Pancreáticas
7.
Nat Commun ; 10(1): 4904, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31659168

RESUMO

Xanthine oxidoreductase has been implicated in cancer. Nonetheless, the role played by its two convertible forms, xanthine dehydrogenase (XDH) and oxidase (XO) during tumorigenesis is not understood. Here we produce XDH-stable and XO-locked knock-in (ki) mice to address this question. After tumor transfer, XO ki mice show strongly increased tumor growth compared to wild type (WT) and XDH ki mice. Hematopoietic XO expression is responsible for this effect. After macrophage depletion, tumor growth is reduced. Adoptive transfer of XO-ki macrophages in WT mice increases tumor growth. In vitro, XO ki macrophages produce higher levels of reactive oxygen species (ROS) responsible for the increased Tregs observed in the tumors. Blocking ROS in vivo slows down tumor growth. Collectively, these results indicate that the balance of XO/XDH plays an important role in immune surveillance of tumor development. Strategies that inhibit the XO form specifically may be valuable in controlling cancer growth.


Assuntos
Neoplasias/enzimologia , Xantina Desidrogenase/genética , Xantina Oxidase/genética , Animais , Proliferação de Células , Feminino , Técnicas de Introdução de Genes , Humanos , Macrófagos/enzimologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Xantina Desidrogenase/metabolismo , Xantina Oxidase/metabolismo
8.
iScience ; 19: 996-1011, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31522122

RESUMO

Understanding the mechanisms fine-tuning immunogenic versus tolerogenic balance in dendritic cells (DCs) is of high importance for therapeutic approaches. We found that NCoR1-mediated direct repression of the tolerogenic program in conventional DCs is essential for induction of an optimal immunogenic response. NCoR1 depletion upregulated a wide variety of tolerogenic genes in activated DCs, which consequently resulted in increased frequency of FoxP3+ regulatory T cells. Mechanistically, NCoR1 masks the PU.1-bound super-enhancers on major tolerogenic genes after DC activation that are subsequently bound by nuclear factor-κB. NCoR1 knockdown (KD) reduced RelA nuclear translocation and activity, whereas RelB was unaffected, providing activated DCs a tolerogenic advantage. Moreover, NCoR1DC-/- mice depicted enhanced Tregs in draining lymph nodes with increased disease burden upon bacterial and parasitic infections. Besides, adoptive transfer of activated NCoR1 KD DCs in infected animals showed a similar phenotype. Collectively, our results demonstrated NCoR1 as a promising target to control DC-mediated immune tolerance.

9.
Life Sci Alliance ; 1(6): e201800164, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30584641

RESUMO

How lymph node stromal cells (LNSCs) shape peripheral T-cell responses remains unclear. We have previously demonstrated that murine LNSCs, lymphatic endothelial cells (LECs), blood endothelial cells (BECs), and fibroblastic reticular cells (FRCs) use the IFN-γ-inducible promoter IV (pIV) of the MHC class II (MHCII) transactivator CIITA to express MHCII. Here, we show that aging mice (>1 yr old) in which MHCII is abrogated in LNSCs by the selective deletion of pIV exhibit a significant T-cell dysregulation in LNs, including defective Treg and increased effector CD4+ and CD8+ T-cell frequencies, resulting in enhanced peripheral organ T-cell infiltration and autoantibody production. The proliferation of LN-Tregs interacting with LECs increases following MHCII up-regulation by LECs upon aging or after exposure to IFN-γ, this effect being abolished in mice in which LECs lack MHCII. Overall, our work underpins the importance of LNSCs, particularly LECs, in supporting Tregs and T-cell tolerance.

10.
Front Immunol ; 9: 2604, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483264

RESUMO

The role of Epithelial to Mesenchymal Transition (EMT) factor Zeb1 is well defined in metastasis and cancer progression but it's importance in dendritic cells (DCs) is unexplored until now. For the first time we report here that Zeb1 controls immunogenic responses of CD8α+ conventional Type-I (cDC1) DCs. We found that ZEB1 expression increases significantly after TLR9 stimulation and its depletion impairs activation, co-stimulation and secretion of important cytokines like IL-6, IL-10 and IL-12 in cDC1 MutuDC line. We further confirmed our findings in primary cDC1 DCs derived from bone marrow. Co-culture of these Zeb1 knock down (KD) DCs with OT-II CD4+ T helper cells skewed their differentiation toward Th2 subtype. Moreover, adoptive transfer of activated Zeb1 KD DCs cleared intestinal worms in helminth infected mice by increasing Th2 responses in vivo. Integrative genomic analysis showed Zeb1 as an activator of immune response genes in cDC1 MutuDCs as compared to other pathway genes. In addition, differentially regulated genes in Zeb1 KD RNA-seq showed significant enrichment of Th2 activation pathways supporting our in vitro findings. Mechanistically, we showed that decreased IL-12 secreted by Zeb1 KD DCs is the plausible mechanism for increased Th2 differentiation. Collectively our data demonstrate that Zeb1 could be targeted in DCs to modulate T-cell mediated adaptive immune responses.


Assuntos
Células Dendríticas/imunologia , Transição Epitelial-Mesenquimal/imunologia , Células Th1/imunologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/imunologia , Imunidade Adaptativa/imunologia , Transferência Adotiva/métodos , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Técnicas de Cocultura/métodos , Feminino , Células HEK293 , Humanos , Interleucina-10/imunologia , Interleucina-12/imunologia , Interleucina-6/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores/imunologia , Células Th2/imunologia , Receptor Toll-Like 9/imunologia
11.
Front Immunol ; 9: 1912, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30197645

RESUMO

Dendritic cells (DCs) are the most potent antigen presenting cells and possess an incomparable ability to activate and instruct T cells, which makes them one of the cornerstones in the regulation of the cross-talk between innate and adaptive immunity. Therefore, a deep understanding of DC biology lays the foundations to describe and to harness the mechanisms that regulate the development of the adaptive response, with clear implications in a vast array of fields such as the study of autoimmune diseases and the development of new vaccines. However, the great difficulty to obtain large quantities of viable non-activated DCs for experimentation have considerably hindered the progress of DC research. Several strategies have been proposed to overcome these limitations by promoting an increase of DC abundance in vivo, by inducing DC development from DC progenitors in vitro and by generating stable DC lines. In the past years, we have described a method to derive immortalized stable DC lines, named MutuDCs, from the spleens of Mushi1 mice, a transgenic mouse strain that express the simian virus 40 Large T-oncogene in the DCs. The comparison of these DC lines with the vast variety of DC subsets described in vivo has shown that all the MutuDC lines that we have generated so far have phenotypic and functional features of type 1 conventional DCs (cDC1s). With the purpose of deriving DC lines with characteristics of type 2 conventional DCs (cDC2s), we bred a new Batf3-/- Mushi1 murine line in which the development of the cDC1 subset is severely defective. The new MutuDC line that we generated from Batf3-/- Mushi1 mice was phenotypically and functionally characterized in this work. Our results demonstrated that all the tested characteristics of this new cell line, including the expression of subset-determining transcription factors, the profile of cytokine production and the ability to present antigens, are comparable with the features of splenic CD4- cDC2s. Therefore, we concluded that our new cell line, that we named CD4- MutuDC2 line, represents a valuable model for the CD4- cDC2 subset.


Assuntos
Imunidade Adaptativa , Linhagem Celular , Células Dendríticas/citologia , Células Dendríticas/imunologia , Animais , Camundongos , Camundongos Knockout , Baço/citologia , Baço/imunologia
12.
Front Immunol ; 8: 1037, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28894448

RESUMO

Sirtuin 2 (SIRT2) is one of the seven members of the family of NAD+-dependent histone deacetylases. Sirtuins target histones and non-histone proteins according to their subcellular localization, influencing various biological processes. SIRT2 resides mainly in the cytoplasm and regulates cytoskeleton dynamics, cell cycle, and metabolic pathways. As such, SIRT2 has been implicated in the pathogenesis of neurodegenerative, metabolic, oncologic, and chronic inflammatory disorders. This motivated the development of SIRT2-directed therapies for clinical purposes. However, the impact of SIRT2 on antimicrobial host defense is largely unknown. Here, we address this question using SIRT2 knockout mice. We show that SIRT2 is the most highly expressed sirtuin in myeloid cells, especially macrophages. SIRT2 deficiency does not affect immune cell development and marginally impacts on intracellular signaling and cytokine production by splenocytes and macrophages. However, SIRT2 deficiency enhances bacterial phagocytosis by macrophages. In line with these observations, in preclinical models, SIRT2 deficiency increases survival of mice with chronic staphylococcal infection, while having no effect on the course of toxic shock syndrome toxin-1, LPS or TNF-induced shock, fulminant Escherichia coli peritonitis, sub-lethal Klebsiella pneumoniae pneumonia, and chronic candidiasis. Altogether, these data support the safety profile of SIRT2 inhibitors under clinical development in terms of susceptibility to infections.

13.
J Transl Med ; 15(1): 126, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28578701

RESUMO

BACKGROUND: Discriminating between autoimmune pancreatitis (AIP), chronic pancreatitis (CP), and pancreatic ductal adenocarcinoma (PDAC) can be challenging. In this retrospective study, levels of serum and tissue cytokines were analyzed as part of the clinical strategy for the preoperative differentiation between AIP and PDAC. The identification of differential cytokine profiles may help to prevent unnecessary surgical resection and allow optimal treatment of these pathologies. METHODS: To compare the cytokine profiles of AIP, CP, and PDAC patients, serum and pancreatic tissue homogenates were subjected to multiplex analysis of 17 inflammatory mediators. In total, serum from 73 patients, composed of 29 AIP (14 AIP-1 and 15 AIP-2), 17 CP, and 27 PDAC, and pancreatic tissue from 36 patients, including 12 AIP (six AIP-1 and six AIP-2), 12 CP, and 12 PDAC, were analyzed. RESULTS: Comparing AIP and PDAC patients' serum, significantly higher concentrations were found in AIP for interleukins IL-1ß, IL-7, IL-13, and granulocyte colony-stimulating factor (G-CSF). G-CSF also allowed discrimination of AIP from CP. Furthermore, once AIP was divided into subtypes, significantly higher serum levels for IL-7 and G-CSF were measured in both subtypes of AIP and in AIP-2 for IL-1ß when compared to PDAC. G-CSF and TNF-α were also significantly differentially expressed in tissue homogenates between AIP-2 and PDAC. CONCLUSIONS: The cytokines IL-1ß, IL-7, and G-CSF can be routinely measured in patients' serum, providing an elegant and non-invasive approach for differential diagnosis. G-CSF is a good candidate to supplement the currently known serum markers in predictive tests for AIP and represents a basis for a combined blood test to differentiate AIP and particularly AIP-2 from PDAC, enhancing the possibility of appropriate treatment.


Assuntos
Adenocarcinoma/diagnóstico , Doenças Autoimunes/diagnóstico , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/diagnóstico , Citocinas/sangue , Neoplasias Pancreáticas/diagnóstico , Pancreatite Crônica/sangue , Pancreatite Crônica/diagnóstico , Adenocarcinoma/sangue , Adenocarcinoma/fisiopatologia , Adulto , Doenças Autoimunes/sangue , Doenças Autoimunes/fisiopatologia , Carcinoma Ductal Pancreático/fisiopatologia , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/sangue , Pancreatite Crônica/fisiopatologia , Curva ROC , Neoplasias Pancreáticas
14.
Sci Rep ; 7(1): 3853, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28634345

RESUMO

Sirtuin 3 (SIRT3) is the main mitochondrial deacetylase. SIRT3 regulates cell metabolism and redox homeostasis, and protects from aging and age-associated pathologies. SIRT3 may drive both oncogenic and tumor-suppressive effects. SIRT3 deficiency has been reported to promote chronic inflammation-related disorders, but whether SIRT3 impacts on innate immune responses and host defenses against infections remains essentially unknown. This aspect is of primary importance considering the great interest in developing SIRT3-targeted therapies. Using SIRT3 knockout mice, we show that SIRT3 deficiency does not affect immune cell development and microbial ligand-induced proliferation and cytokine production by splenocytes, macrophages and dendritic cells. Going well along with these observations, SIRT3 deficiency has no major impact on cytokine production, bacterial burden and survival of mice subjected to endotoxemia, Escherichia coli peritonitis, Klebsiella pneumoniae pneumonia, listeriosis and candidiasis of diverse severity. These data suggest that SIRT3 is not critical to fight infections and support the safety of SIRT3-directed therapies based on SIRT3 activators or inhibitors for treating metabolic, oncologic and neurodegenerative diseases without putting patients at risk of infection.


Assuntos
Infecções Bacterianas/genética , Interações Hospedeiro-Patógeno/genética , Micoses/genética , Sirtuína 3/deficiência , Animais , Biomarcadores , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Resistência à Doença/genética , Humanos , Imunofenotipagem , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Timócitos/imunologia , Timócitos/metabolismo
15.
Eur J Immunol ; 47(4): 637-645, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28191643

RESUMO

Th17 cells are often associated with autoimmunity and been shown to be increased in CD11b-/- mice. Here, we examined the role of CD11b in murine collagen-induced arthritis (CIA). C57BL/6 and CD11b-/- resistant mice were immunized with type II collagen. CD11b-/- mice developed arthritis with early onset, high incidence, and sustained severity compared with C57BL/6 mice. We observed a marked leukocyte infiltration, and histological examinations of the arthritic paws from CD11b-/- mice revealed that the cartilage was destroyed in association with strong lymphocytic infiltration. The CD11b deficiency led to enhanced Th17-cell differentiation. CD11b-/- dendritic cells (DCs) induced much stronger IL-6 production and hence Th17-cell differentiation than wild-type DCs. Treatment of CD11b-/- mice after establishment of the Treg/Th17 balance with an anti-IL-6 receptor mAb significantly suppressed the induction of Th17 cells and reduced arthritis severity. Finally, the severe phenotype of arthritis in CD11b-/- mice was rescued by adoptive transfer of CD11b+ DCs. Taken together, our results indicate that the resistance to CIA in C57BL/6 mice is regulated by CD11b via suppression of IL-6 production leading to reduced Th17-cell differentiation. Therefore, CD11b may represent a susceptibility factor for autoimmunity and could be a target for future therapy.


Assuntos
Artrite Experimental/imunologia , Antígeno CD11b/metabolismo , Cartilagem/imunologia , Células Dendríticas/imunologia , Interleucina-6/metabolismo , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Transferência Adotiva , Animais , Anticorpos Bloqueadores/farmacologia , Antígeno CD11b/genética , Diferenciação Celular , Células Cultivadas , Colágeno Tipo II/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-6/imunologia
16.
Front Immunol ; 8: 98, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28228759

RESUMO

Dendritic cells (DCs) play a central role in shaping immunogenic as well as tolerogenic adaptive immune responses and thereby dictate the outcome of adaptive immunity. Here, we report the generation of a CD8α+ DC line constitutively secreting the tolerogenic cytokine interleukin (IL)-35. IL-35 secretion led to impaired CD4+ and CD8+ T lymphocyte proliferation and interfered with their function in vitro and also in vivo. IL-35 was furthermore found to induce a tolerogenic phenotype on CD8α+ DCs, characterized by the upregulation of CD11b, downregulation of MHC class II, a reduced costimulatory potential as well as production of the immunomodulatory molecule IL-10. Vaccination of mice with IL-35-expressing DCs promoted tumor growth and reduced the severity of autoimmune encephalitis not only in a preventive but also after induction of encephalitogenic T cells. The reduction in experimental autoimmune encephalitis severity was significantly more pronounced when antigen-pulsed IL-35+ DCs were used. These findings suggest a new, indirect effector mechanism by which IL-35-responding antigen-presenting cells contribute to immune tolerance. Furthermore, IL-35-transfected DCs may be a promising approach for immunotherapy in the context of autoimmune diseases.

17.
Methods Mol Biol ; 1423: 39-49, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27142007

RESUMO

It is notoriously difficult to obtain large quantities of non-activated dendritic cells ex vivo. For this reason, we produced and characterized a mouse model expressing the large T oncogene under the CD11c promoter (Mushi mice), in which CD8α(+) dendritic cells transform after 4 months. We derived a variety of stable cell lines from these primary lines. These cell lines reproducibly share with freshly isolated dendritic cells most surface markers, mRNA and protein expression, and all tested biological functions. Cell lines can be derived from various strains and knockout mice and can be easily transduced with lentiviruses. In this article, we describe the derivation, culture, and lentiviral transduction of these dendritic cell lines.


Assuntos
Antígenos Transformantes de Poliomavirus/genética , Antígeno CD11c/genética , Antígenos CD8/metabolismo , Técnicas de Cultura de Células/métodos , Transformação Celular Neoplásica/patologia , Células Dendríticas/patologia , Animais , Transformação Celular Neoplásica/genética , Células Dendríticas/imunologia , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Células Tumorais Cultivadas
18.
Eur J Immunol ; 46(6): 1427-37, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27064265

RESUMO

The ability of pathogens to influence host cell survival is a crucial virulence factor. Listeria monocytogenes (Lm) infection is known to be associated with severe apoptosis of hepatocytes and spleen cells. This impairs host defense mechanisms and thereby facilitates the spread of intracellular pathogens. The general mechanisms of apoptosis elicited by Lm infection are understood, however, the roles of BH3-only proteins during primary Lm infection have not been examined. To explore the roles of BH3-only proteins in Lm-induced apoptosis, we studied Listeria infections in mice deficient in Bim, Bid, Noxa or double deficient in BimBid or BimNoxa. We found that BimNoxa double knockout mice were highly resistant to high-dose challenge with Listeria. Decreased bacterial burden and decreased host cell apoptosis were found in the spleens of these mice. The ability of the BH3-deficient mice to clear bacterial infection more efficiently than WT was correlated with increased concentrations of ROS, neutrophil extracellular DNA trap release and downregulation of TNF-α. Our data show a novel pathway of infection-induced apoptosis that enhances our understanding of the mechanism by which BH3-only proteins control apoptotic host cell death during Listeria infection.


Assuntos
Apoptose , Listeria monocytogenes , Listeriose/etiologia , Listeriose/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/deficiência , Proteína 11 Semelhante a Bcl-2/deficiência , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Resistência à Doença/genética , Resistência à Doença/imunologia , Suscetibilidade a Doenças , Armadilhas Extracelulares/imunologia , Feminino , Expressão Gênica , Listeriose/mortalidade , Listeriose/patologia , Masculino , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/genética , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/deficiência , Espécies Reativas de Oxigênio/metabolismo , Baço/imunologia , Baço/metabolismo , Baço/patologia , Taxa de Sobrevida
19.
Eur J Immunol ; 46(3): 656-64, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26621778

RESUMO

Experimental autoimmune myocarditis (EAM) is a CD4(+) T-cell-mediated model of human inflammatory dilated cardiomyopathies. Heart-specific CD4(+) T-cell activation is dependent on autoantigens presented by MHC class II (MHCII) molecules expressed on professional APCs. In this study, we addressed the role of inflammation-induced MHCII expression by cardiac nonhematopoietic cells on EAM development. EAM was induced in susceptible mice lacking inducible expression of MHCII molecules on all nonhematopoietic cells (pIV-/- K14 class II transactivator (CIITA) transgenic (Tg) mice) by immunization with α-myosin heavy chain peptide in CFA. Lack of inducible nonhematopoietic MHCII expression in pIV-/- K14 CIITA Tg mice conferred EAM resistance. In contrast, cardiac pathology was induced in WT and heterozygous mice, and correlated with elevated cardiac endothelial MHCII expression. Control mice with myocarditis displayed an increase in infiltrating CD4(+) T cells and in expression of IFN-γ, which is the major driver of nonhematopoietic MHCII expression. Mechanistically, IFN-γ neutralization in WT mice shortly before disease onset resulted in reduced cardiac MHCII expression and pathology. These findings reveal a previously overlooked contribution of IFN-γ to induce endothelial MHCII expression in the heart and to progress cardiac pathology during myocarditis.


Assuntos
Doenças Autoimunes/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Miocardite/imunologia , Animais , Autoantígenos , Linfócitos T CD4-Positivos , Modelos Animais de Doenças , Endotélio/imunologia , Inflamação , Interferon gama/imunologia , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Miocárdio/patologia , Miocárdio/ultraestrutura , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Transativadores/genética
20.
PLoS One ; 10(8): e0133917, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26247358

RESUMO

Langerhans cell histiocytosis (LCH) is a rare disease caused by the clonal accumulation of dendritic Langerhans cells, which is often accompanied by osteolytic lesions. It has been reported that osteoclast-like cells play a major role in the pathogenic bone destruction seen in patients with LCH and these cells are postulated to originate from the fusion of DCs. However, due to the lack of reliable animal models the pathogenesis of LCH is still poorly understood. In this study, we have established a mouse model of histiocytosis- recapitulating human disease for osteolytic lesions seen in LCH patients. At 12 weeks after birth, severe bone lesions were observed in our multisystem histiocytosis (Mushi) model, when CD8α conventional dendritic cells (DCs) are transformed (MuTuDC) and accumulate. Most importantly, our study demonstrates that bone loss in LCH can be accounted for the transdifferentiation of MuTuDCs into functional osteoclasts both in vivo and in vitro. Moreover, we have shown that injected MuTuDCs reverse the osteopetrotic phenotype of oc/oc mice in vivo. In conclusion, our results support a crucial role of DCs in bone lesions in histiocytosis patients. Furthermore, our new model of LCH based on adoptive transfer of MuTuDC lines, leading to bone lesions within 1-2 weeks, will be an important tool for investigating the pathophysiology of this disease and ultimately for evaluating the potential of anti-resorptive drugs for the treatment of bone lesions.


Assuntos
Osso e Ossos/patologia , Células Dendríticas/patologia , Histiocitose de Células de Langerhans/patologia , Células de Langerhans/patologia , Osteólise/patologia , Animais , Conservadores da Densidade Óssea/uso terapêutico , Osso e Ossos/efeitos dos fármacos , Linhagem Celular , Transdiferenciação Celular , Difosfonatos/uso terapêutico , Modelos Animais de Doenças , Histiocitose de Células de Langerhans/complicações , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoclastos/patologia , Osteólise/complicações , Osteólise/prevenção & controle , Osteoprotegerina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...